Convergence acceleration of Taylor sections by convolution

نویسنده

  • Jürgen Müller
چکیده

Abstract. Taylor sections Sn(f) of an entire function f often provide easy computable polynomial approximants of f . However, while the rate of convergence of (Sn(f))n is nearly optimal on circles around the origin, this is no longer true for other plane sets as for example real compact intervals. The aim of this paper is to construct for certain families of (entire) functions sequences of polynomial approximants which are computable with essentially the same effort as Taylor sections and which have a better rate of convergence on some parts of the plane. The resulting method may be applied for example to (modified) Bessel functions, to confluent hypergeometric functions or to parabolic cylinder functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

Modified frame algorithm and its convergence acceleration by Chebyshev method

The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...

متن کامل

Optimal Convolution Sor Acceleration of Waveform Relaxation with Application to Semiconductor Device Simulation

In this paper we describe a novel generalized SOR algorithm for accelerating the convergence of the dynamic iteration method known as waveform relaxation. A new convolution SOR algorithm is presented, along with a theorem for determining the optimal convolution SOR parameter. Both analytic and experimental results are given to demonstrate that the convergence of the convolution SOR algorithm is...

متن کامل

Krylov Subspace Acceleration of Waveform Relaxation

In this paper we describe and analyze Krylov subspace techniques for accelerating the convergence of waveform relaxation for solving time dependent problems. A new class of accelerated waveform methods, convolution Krylov subspace methods, is presented. In particular, we give convolution variants of the conjugate gradient algorithm and two convolution variants of the GMRES algorithm and analyze...

متن کامل

Numerical solution of Voltra algebraic integral equations by Taylor expansion method

Algebraic integral equations is a special category of Volterra integral equations system,  that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998